News About  

Calculating Waste Heat Recovery

26/09/2017 12:32:00
Download Text
ImagesClick Image for 300dpi jpg fileCalculating Waste Heat RecoveryCalculating Waste Heat RecoveryCalculating Waste Heat Recovery

Industry now lives by the mantra of seeking efficient energy use. Businesses with processes demanding high energy consumption should be looking to improve energy efficiency and minimise waste. Increasingly, industrial plants are looking at heat recovery methods as a means to improve energy efficiency and sustainability of their business.

Lionel Macey, founder and Technical Director of ThermTech Ltd, the UK based industrial waste heat recovery and gas cooling and cleansing systems specialist, provides an insight to calculating and understanding waste heat and highlights the benefits companies can expect when implementing a waste heat transfer system.

A substantial reduction of energy costs used to heat water in a steam boiler can be achieved by applying a custom designed gas-to-water heat exchange system. Purpose designed and installed around the gas flue outlet of an existing steam boiler, the spent gas is exchanged and used to heat water. The heated water is added to the incoming mains water feeding the boiler. The resulting increase of inlet water temperature reduces the boiler energy required to produce steam.

Why heat recovery is important

Energy efficiency is a constant challenge for industry. Globally accepted and recognised by many as a requirement, best business practice dictates ways to improve operating efficiency should be sought out. In the short term the benefit of achieving this reduces fuel bills and hence operating costs; in the long term global carbon dioxide emissions are reduced.

Most industrial processes require energy to run, however only a portion of the energy input is used for each process. The remainder of the unused energy is rejected to the environment, usually in the form of heat, either in gas or liquid form. It is possible to recapture most of this energy through waste heat recovery. This energy can become the energy source for three general applications; thermal heating, electricity generation and cooling. The heat is either re-applied to the same process it was originally generated for, or used for a different process in the plant.

Calculating waste heat flow

Knowing the total heat flow rate from the waste stream allows the potential value of this heat to be determined. Hence the capital project cost can be calculated and a decision made if the project makes economic sense. The following formula determines if sufficient volume is available for waste heat recovery.

Q = S V ρ Cp ΔT

S = Cross sectional area (m2) of waste flow pipe/ducting

V = Flow velocity (m/sec)

ρ = Media density (kg/m3)

Cp = specific heat constant of the media (kJ/Kg.°C)

ΔT = Temperature difference (°C)

‘Q’ from the calculation above is the theoretical maximum flow rate of waste heat that in a perfect system is available for recovery, however, not all of this waste heat will be recovered. Calculating the optimal value for ‘Q’ requires additional details of the current installation such as; precise temperatures of the inlet and outlet water or gas and location of process pipe work of the waste heat source, in relation to the possible installation location of the waste heat recovery equipment.

Converting waste heat to an efficient type of energy storage media, such as water or thermal heat transfer fluid, at the earliest opportunity will reduce heat losses and enable the waste energy to be moved effectively from its source to where it will be applied. In the majority of applications waste heat will be in the form of gas, which is an inefficient energy storage media due to the rapid energy losses. Energy in gas form has a heat constant approximately ten times less than that of a liquid, with the effect that energy absorbed by air dissipates ten times quicker. Therefore, by converting gas heat to liquid heat, the liquid will retain heat for ten times longer.

Calculating project cost from waste heat flow

Business practice defines that the return on investment is the key decision criteria as to whether a project will go ahead. The recovery of heat is no exception and while on the surface you could view any re-use of spent energy as a bonus to the ‘green credentials’ of a company and its environmental impact, business rules do apply. A heat recovery project needs to either reduce energy costs at current productivity output, or look to increase productivity with current levels of energy spending.

In order to establish the cost benefits a company will achieve, justification should be sought in terms of comparing energy costs of the existing process before heat recovery and the calculated costs after a heat recovery system has been installed.

In all waste heat recovery projects, the heat recovered will displace a medium, such as steam, which would have to be generated using another piece of equipment, such as a boiler. This equipment likewise has a related efficiency, and the heat output is always less than the heat input. To determine the monetary value of the waste heat stream, use the equations below.

Value = Q x unit cost

Q = Waste energy flow rate (kW/hour)

Value = monetary value per hour of the waste heat stream

Q = maximum waste heat flow in kW/hour (previously calculated)

unit cost = unit cost of the waste stream in ‘Currency’ per kW

Unit cost = Fuel cost / Efficiency

Unit cost = m‘Currency’ per kW

fuel cost = cost for fuel used in currency per kW

Efficiency =efficiency of unused equipment

(For example, a steam boiler @ 75% = efficiency 0.75)

Achieving the best results

The engineering behind heat recovery systems is quite complex and companies should approach experienced and trusted partners to develop a project. Defining the ROI and determining the feasibility of the project is important before going ahead. With the right design and the application of sound engineering, it is possible to implement a waste heat recovery system that will benefit the business for many years.

Photo Captions:

Photo1: Lionel Macey, founder and Technical Director of ThermTech Ltd.

Photo 2: By reducing the amount of fuel used to produce heat in a boiler installation, the heating efficiency increases, resulting in lower fuel use. This serves both the requirement to increase efficiency and reduce carbon emissions.

Photo 3: Usually constructed from carbon steel, the economiser design incorporates finned tubes, containing the boiler feed water, that run perpendicular to the flow of hot gas.

About ThermTech

ThermTech designs, manufactures and installs bespoke industrial waste heat recovery systems and flue gas filter systems, with unrivalled technical excellence, through a highly skilled workforce.

In business for over 25 years it has an unparalleled track record in innovation and quality in the construction of conventional and condensing economisers, plus, activated carbon filter systems.

Its systems are designed to offer energy saving and sustainability solutions to businesses predominantly across the UK, Ireland, Europe, the Middle East and North America.

Based in Manchester but operating in many export markets, ThermTech works with consultants, contractors and end-users across the chemical, processing, power, industrial and manufacturing sectors.

ThermTech remains at the forefront of heat recovery, and keeping your boiler performance at the optimum efficiency levels whilst at the same time reducing energy bills, reducing emissions and managing the carbon footprint of your business.

The image(s) distributed with this press release may only be used to accompany this copy, and are subject to copyright. Please contact DMA Europa if you wish to license the image for further use.

Editor Contact

DMA Europa Ltd. : Rebecca Hatch
Tel: +44 (0)1562 751436 Fax: +44 (0)1562 748315

Company Contact

ThermTech : Neil English
Tel: +44 (0)161 339 3049 Fax:

  [ Back ]  
About the DMA Group Click to Read More